|
g
?
,.%
¥

R E £ 0O R T . R E 8 U M E S

£D 019 855 EM GG6 161

COMFUTER FACILITIES FOR MATHEMATICS INSTRUCTION.
NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS INC.
ECRS PRICE MF-$G.25 HC NOT AVAILABLE FROM ECRS. 51F.

PESCRIFTORS- MATHEMATICS INSTRUCTION, :H:SECONDARY SCHOOL
MATHEMATICS, ECUCATIONAL EQUIPMENT, =%COST EFFECTIVENESS,
#*SYSTEMS AFFROACH, #*COMPUTER ASSISTEC INSTRUCTION, =xTIME
SHARING, ALGORITHMS, COMFUTER SCIENCE, ELECTRONIC EQUIFMENT,
COMFARATIVE ANALYSIS, ALGOL, FORTRAN, TELETYPE

'THE EFFECTIVE AND ECONGCMICAL USE. OF COMPUTER FACILITIES
AS AN AID IN TEACHING SECONDARY SCHCOL MATHEMATICS DEFENDS ON
(1) ACCESS TO A TYPE OF FACILITY WHICH PERMITS
FROBLEM-SOLVING PRCOCECURES (I.E., ALGORITHMS CESIGNED BY A
STUDENT) TO BE TESTEDC BY THE STUDENT AND (2) FACILITY

' RESFONSE TIME PER FROBLEM. THIS UNIT TIME VARIES WITH THE
_ SIZ2E, TYFE, AND- COST OF AVAILABLE COMFUTER FACILITIES. FOR

VERY LOW COST AND SMALL SIZE FACILITIES, THE USE OF
ALGORITHMIC LANGUAGES (E.G., ALGOL AND FORTRAN) IS
SACRIFICED, RESULTING IN GADGET-CRIENTED, RATHER THAN
MATHEMATICS~ORIENTED, STUDENTS. AT THE OTHER EXTREME,
FACILITIES RICH IN SOFTWARE (I.E., INTERNAL CAPACITIES TO
ENHANCE ALGORITHMIC COMMUNICATICNS) ARE ALSO EXFENSIVE ANC OF
LIMITED AVAILABILITY TO SECONDARY SCHOOL STUDENTS. TO OBTAIN
SOME QUANTITATIVE INFORMATION ON THE EFFICIENCY OF COMPUTER
FACILITIES, FIVE TYFICAL FRCBLEMS WERE RUN ON. SIX TYPES OF
COMPUTER FACILITIES. THE TIME TO RUN THE SET OF FIVE FROBLEMS
VARIEC FROM ABOUT 90 MINUTES TO 3 MINUTES. THE 3-MINUTE
SYSTEM WAS A LARGE-SCALE FACILITY LOCATED AT A UNIVERSITY. OF
SIGNIFICANT INTEREST WAS THE 2G-MINUTE SYSTEM, WHICH
CONSISTED OF TELETYFE ACCESS TO A LARGE-SCALE, TIME-SHARING
SYSTEM. AT THE FRESENT TIME, SOME FORM OF INDIRECT ACCESS IS
THE LEAST EXFENSIVE AND MOST EFFICIENT WAY TO USE COMPUTERS
AS INSTRUCTIONAL TOOLS IN TEACHING MATHEMATICS. THIS DOCUMENT
IS AVAILABLE FOR $0G.90 FRCM NATIONAL COUNCIL CF TEACHERS OF
MATHEMATICS, 1201 SIXTEENTH ST., N.W., WASHINGTON, £.C.
20036, (CS) ’

Y R S e S

R

PR v

SES i WA GNPV (TR

XN

PROCESS wITH MICROFICHE AND
PUBLISHER’S PRICES. MICRO-

FICHE REPRODUCTION ONLY. ,

\..u,u.:i.‘ | | ﬁm ‘g ol ~ .‘ ’
COMPUTER
FACILITIES

FOR

MATHEMATICS

INSTRUCTION

NATIONAL COUNCIL OF

TEACHERS OF MATHEMATICS

Q

ERIC

Aruitoxt provided by Eic:

S

¥

521

\
!
;
?{

-

oW W e e T ST R e 7

. TAK

I AT v RN .

P et T ang STERDGEITE i e H

e

-

L L Y

EM 006 (&

PROCESS WITH MICROFICHE AND
PUBLISHER'S PRICES. MICRO-
FICHE REPRODUCTION ONLY.

~ MATHEMATICS |

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.

¢
1
i
1

ce this copyrighted work has been
granted to the Educational Resourcesl-nformafion Center
(ERIC) and to the organization operating under contract
| with the Office to Education to reproauce-docqments in-
| cluded in the ERIC system by means of microfiche c-mly,
but this right is not conferred fo any users of the micro-
fiche received from the ERIC Document Repr-nduchon
Service. Further reproduction of any part requires per-

mission of the copyright owner.

Permission to reprodu

Copyright © 1967
The National Council of
Teachers of Mathematics, Inc.
All Rights Reserved

|
g Printed in the United States of America
}
H

Computer-oriented Robert L. Albrecht ¢ William F. Atchison
Mathematics Sylvia Charp * David C. Johnson
Committee Bruce E. Meserve * John O. Parker
Dina Gladys S. Thomas

{ Acknowledgments Tom Kurtz
'; to Bruce Thompson

r Library of Congress
’ Catalog Card Number
67-29896

[i .

e

e TT N N

Chapter 1

Chapter 11

Chapter 111

Chapter IV

SHEERRBEBB Y

Introduction

Instructional Uses of Computers

Getting Started
Computer Facilities for School Use

Steps in Problem Solving

Definition of the Problem

Analysis of the Problem

Development of the Program

Input of the Program into the Computer
Execution of the Program with Test Data
Interpretation of the Trial Run

Debugging (Correcting Errors in a Program)
Documentation of the Problem-Solving Procedure

Computer Systems

Minimum Computer System

Systems with Automatic Input and Qutput
Interpreters

Algorithmic Languages

Systems with Auxiliary Storage

Monitors

Time-Sharing Systems

Student Access te a Computer System

Sample Problems

Sample Problems
Computer Facilities
Computer A
Computer B
Computer C
Computer D
Computer E
Computer F
Summary

iii

REE 2

T I
RIS L

e N w’r_xm«%ml‘fz‘ﬁam?:«

S S

P o

R L,
per S0, et R N T T g 2

o.n oz

P,

RS Py

T

L

T s ot I . N R e PWR g B TR
. .

LoD

oducticn

OMPUTER-ORIENTED educational programs are appearing with

increasing frequency in secondary schools throughout the United
States. Computers are used for instructional purposes, already, in hun-
dreds of schools. Existing programs are growing rapidly, and many new
programs are being initiated. All levels of secondary education are
involved.

The rapid growth of computer education in the secondary schools has
created a demand for information on educational uses of computers,
instructional areas, types of computer systems, methods of starting and
operating a computer-oriented educational program, and the costs of
such a program.

This booklet is written to provide this type of information for the
teacher or administrator who is considering methods of introducing com-
puter topics or courses on computers into the secondary school curricula.
It is assumed that the person who reads this booklet is not a complete
novice in computer concepts and utilization. A sufficient background
can be acquired by reading an introductory text on computer methods.
In particular, the authors recommend the books Computer Oriented
Mathematics, a publication of the National Council of Teachers of Mathe-
matics, and Information, a Scientific American book published by W. H.
Freeman and Company.

g

e S £ .

PRy
-

Ay BE L TE e 8
.

[O N o ST

RS e

I O

R Ry Tt

Lo

Jwers N

st o

I e N A Wi, s AT I I s I 1%
5 .

ey

ERIE S g == -

ctional Uses
mputers

OMPUTERS are at work in hundreds of school systems. The use
of computers for administrative data processing, record keeping,
counseling, and research is commonplace and well developed. Although
the use of computers in the instructional area is not yet so widespread,
it is expanding at an explosive rate.
Most of the computer-oriented educational programs that are cur-
rently under way fall into one of the following instructional categories.

1. Vocational education in computers

This is computer education, per se. The computer and its applications
are the primary objects of instruction. At the post-high-school level, the
intent of this type of education is to prepare people for professional or
semiprofessional careers in the computer field. Secondary school courses
are not adeguate preparation for these careers; however, they can provide
guidance and counseling information for students who are considering a
post-high-school course of study in some area of vocational computer
education. For example, prevocational courses may be offered in the
secondary school for students interested in careers as computer mainte-
nance technicians or as business data-processing programmers.

2. Topics in “computer culture”

There is a great deal of interest, curiosity, and superstition about com-
puters among both schoolchildren and the general public. Hence it is

1

v s s+ S s e ABe m em. iae e s eni e DL T tTa e

P e R L e

2 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

appropriate to include in existing courses, at all grade levels, topic: about
computers and the impact of computers on our society. Short computer-
oriented topics can be taught in existing courses in the secondary school
and perhaps in the elementary school as well. These topics can be incor-
porated into many courses in a way that reinforces and enriches the
subject matter of the course itself. Obvious areas are mathematics, the
physical sciences, and business. Meaningful units could be developed
also in the biological and social sciences.

3. Computer-assisted problem solving

One of the most widespread areas of computer application is the use
of a computer as a problem-solving tool. This subject can be taught at
all grade levels in the secondary school. It is frequently taught as an
integral part of an existing course. Students use the computer to help
solve problems pertinent to the subject matter of the course. This permits
solving problems of greater scope and complexity than could be handled
otherwise.

There is evidence that computer-assisted problem solving can be used
effectively as an instructional aid in teaching mathematics, science, eco-
nomics, business, and other noncomputer subjects. In mathematics, for
example, a computer can be used to demonstrate concepts, provide a
laboratory for mathematical experimentation and discovery, and provide
an environment in which students can put into practice the mathematics
taught in the classroom. It provides a practical means for testing
problem-solving procedures (algorithms) designed by students.

4. Computers as instructional aids

A few experimental systems have been developed in which computers
either are used directly as teaching machines or provide various types of
direct assistance to the classroom teacher. Some of the ways in which
systems of this type are used are listed below.

Preparation of instructional material

Reinforcement of instruction by means of simulation of physical, social,
economic, political, and business systems (for example, by playing
computer-based economic or- political games)

Presentation of programmed instructional stimuli to students by means
of terminals connected to, and controlled by, the computer

Acquisition and storage of responses made by students

Retrieval and presentation of information stored within the system upon
request of the teacher or student

e

w0

—t

o Lol

_:‘:f?:“v:@i}{_i 5

. T .
on, e St g,

o e

s A g AT

-

o

N . s
I T N e T
. .

-

INSTRUCTIONAL USES OF COMPUTERS / 3

Today, systems of this type are highly experimental and very expensive.
Frrthermore, well-designed instructional material for computer-controiled
presentation (the third item) is almost r~nexistent. However, a great
deal of developmental work is under way, and within a few years com-
puters may become very economical and useful teaching assistants.

Although computer usage for instructional purposes is growing rapidly,
very little research has been done to identify what to teach and how to
teach it and to evaluate the impact of the computer on secondary educa-
tion. Furthermore, many pilot projects have been hampered by lack of
suitable instructional materials and by computer facilities that are inade-
quate and poorly designed for educational use. In this booklet our
primary objectives will be the description of various types of computer
facilities and the economic, efficient, and practical use of these facilities
in operating a computer-criented educational program.

Getting Started

Since so many secondary schools are responding to the impact of com-
puters, the following general suggestions are offered.!

1. The most important consideration in developing a computer-
oriented educational program is to be sure that one has an enthusiastic
and knowledgeable person to direct the computer activity.

One of his first steps should be to interest teachers in many depart-
ments, as well as administrators, in their potential use of the computer
facility. He should also offer to give in-service courses to train these
persons. It is desirable for at least one person in each department to
be familiar with the use of computational facilities.

9 The selection of an adequate computer facility is probably the
next most important point to be considered in developing an academic
program, This, of course, may be a function of the amount of money
available. Under any circumstances, however, a stored-program com-
puter is the only type that should be considered. It is desiruble that the
computer facility be able to process programs written in an algorithmic
language such as ALGOL, BASIC, FORTRAN, or JOSS. Computer
systems and languages are described in Chapter 3 of this booklet.

3. The person who directs the computer activities and those who work
closely with him should make early detailed plans for the use of the

1 Most of the information in this section is taken from the article “Computers for
School Mathematics,” by Walter Hoffman et al., The Mathematics Teacher, LVIII
(May 1965), 393-401.

4 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

computer. This includes becoming familiar with the library of programs
available for the computer as well as having a number of applications
prepared ahead of time.

! 4. The computer facility should most certainly be available to all
school departments and should be put to considerable use at least in
| mathematics, physics, chemistry, and business courses. There should be
continued effort to develop computer applicatiors that are nontrivial and
meaningful in terms of the content of the school curriculum.

5. Another consideration is to be sure that the computer facility is
easily accessible to all potential users. If it is on the school premises,
it should be centrally located in the school complex. If the computer
facility used is not at the school, the method of handling and transporting
computer programs must be as simple ar.d expeditious as possible. It is
important to make it easy for the student to get his computer work done.

6. In the development of computer activity it is wise to seek the advice
of knowledgeable people who have been in the computer field for a
number of years. They can be helpful both in the selection of equipment
and in offering svggestions about curriculum. Such advisers can usually
be found in a nearby college or university or in successful industrial or
governmental computer installations.

Computer Facilities for School Use

Some computer-oriented topics can be taught without the use of a
computer. However, the real benefits of a school program of computer
education can be obtained only if teachers and students have access to
a computer facility. At present, computers and computer facilities that
are well designed to meet the objectives of secondary education are
extremely rare. In many existing programs, educational objectives have
necessarily been modified in order to make use of computer facilities
that are available.

Devices other than true computers are being used to teach computer-
oriented concepts, computation skills, and problem solving. These include
computer simulators, adding machines, calculators, logic trainers, digital
trainers.

The above devices are of limited use (for example, none of them can
process algorithmic-language programs) and are not discussed in detail
in this booklet. Instead, we will concentrate on the use of small stored-
program computers and centralized computer systems that provide for
processing of student-written procedures.

- e Mt I ot e

-

g Bt g AN 020 B s IR+ et

W -

INSTRUCTIONAL USES OF COMPUTERS / 5

A school that has decided to include computer instruction in its cur-
riculum can arrange for computer processing of student programs by a
number of different methods, We shall consider three ways in which
this can be done:

Direct access is provided by transporting students to a computer center,
“hands-on” execution of programs.

9. Indirect access—Student programs are sent to a computer center
for processing, and the results are returned to the student.

3. Time-shared access—Students communicate with a time-sharing
computer system by means of a terminal that operates over a telephone
line.

Direct access is provided by transporting students to a computer center,
by installing a computer in the school, or by bringing a small portable
computer into the classroom.

Since it is not really important to teach students to be skilled computer
operators, the objectives of computer-oriented educational programs can
frequently be achieved by providing the means for indirect use of a
computer located at a computer center. Access to the computer can be
by mail, by courier, or by transmission over a telephone line. In this type
of access, an important consideration is turn-around time; this is the
elapsed time between requesting the use of the computer and receiving
the results.

Four types of computer centers are listed below.

1. School district computer center—Many school districts already have
computers for administrative data processing which could be used also

for instructional purposes. In many installations, however, the administra-

tive load expands to the maximum capacity of the computer system;
hence, instructional use may be very limited.

9 Commercial centers—Computer time can be purchased in small
units from commercial computer centers.

3. College and university centers—Several colleges and universities
provide computer services for secondary school instructional use.

4. Educational computer centers—The ideal facility for educational
use is a center set up and designed specifically for educational purposes.
Centers of this type are already in the planning stage and will probably
be available soon in many areas.

In Chapter 3 we will describe several types of computer facilities and
discuss methods of access.

KIS AT

TP O ST M AV e

|

s in Problem Solving

ORE THAN 45,000 computers are in use in the United States,
dealing with problems encountered in almost every area of human
endeavor. Computers range in size from small machines that can solve
only a few small problems in a day to large-scale computer systems that
can provide solutions to thousands of small problems or a few very large
problems in a day.

Many methods of computer operation have been developed. On small
computers, the methods of operation are limited by the relatively small
capacity of the computer; on large-scale computers, powerful and efficient
operating methods are available. In the educational use of computers,
the type of computer and the method of operation must be matched to
the educational objectives desired and to the economics of operating a
program of computer-mediated education.

In order to evaluate the relative merits of various computers and
methods of computer operation, it is necessary to understand the manner
in which a problem is solved on a computer. The process of solving a
problem on a computer should consist of the following steps:

1. Definition of the problem to be solved
2. Analysis of the problem

Development of a computer program
Input of the program into the computer
Execution of the program with test data
Interpretation of the trial execution

6

SANE S

o

G b MAALETEETS

oy WBUIEY

TR

-

A

KA

LT e i

R

e

96

R R \@1}1 — AT Ry

AR

g = o T S

STEPS IN PROBLEM SOLVING / 7

7. Corrections and revisions of the program
8. Documentation of the problem-solving procedure

These basic steps are outlined in Figure 2-1, on page 9. The diagram
is an example of a flow chart, or block diagram.

Definition of the Problem
The problem to be solved must be clearly identified and precisely

stated. This requirement seems obvious, but it is so often violated in

practice that we emphasize it here. The user must have a clear idea of
the problem that he wants to solve and of the results he wants to obtain.
For example, consider the following definition of a problem to be
solved by use of a computer: “Compute the roots of the equation
ax> + bx + ¢ = 0, where a, b, and ¢ are input data.”
This is an example of an incomplete problem definition. Unanswered
questions include the following:

1. How are a, b, and ¢ defined? Are they integers? Rational numbers?
Real numbers? Complex numbers?

2. If a, b, and c are, say, integers, are only integer roots to be com-
puted? Approximations to real roots? Complex roots? If the solution set
is empty (¢ = b = 0 and ¢ 3 0), how should this be indicated?

3. What should be done to analyze errors due to approximate arith-
metic in the computer?

A more complete problem definition is this: “Let @, b, and ¢ be integers
in the range (—1,000 < @, b, ¢ < 1,000). Develop a program to compute
the rational roots of the equation ax2 + bx + ¢ = 0. If the solution set
is not empty, print @, b, ¢, and the root or roots. If the solution set is
empty, print @, b, and ¢.”

Analysis of the Problem

Analysis of a problem consists of the development of a mathematical
model for the solution. The analysis includes a consideration of what
information is given, what information is desired, and what mathematical
techniques are required to transform the known data into the desired
results. In order to develop a general procedure, the analyst must con-
sider the different circumstances and cases that might occur and provide
for them. (For example, in the “general” solution of the equation
ax? + bx + ¢ = 0, he must provide for cases such as a = 0, b*> — 4ac
< 0, and so on.) It is essential that he understand the role of the com-
puter in developing the solution. He should be aware of the limitations

S A

e g e S L e s s e

Ty

IR

8 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

and pitfalls inherent in computer-assisted problem solving, as well as the
advantages and conveniences.

There are usually several possible mathematical formulations of a
given program. Hence part of the analysis may consist of deciding on
a “best” formulation in order to achieve some definite objective such as
minimum computer time, minimum memory space, maximum precision
of results, or most straightforward (easiest to understand) solution.

Development of the Program

Programming is the development and precise statement of a step-by-
step procedure (algorithm) for solving a problem on a computer. It is
the process of explicitly stating each step of a problem-solving procedure.
The complete set of steps is called a program.

The algorithm to solve a given problem must be designed in terms of
operations that can be performed by the computer system to be used.
The algorithm is frequently first prepared in the form of a flow chart
that displays the overall structure of the procedure.

A flow chart is a pictorial representation of the program. Steps in the
program are enclosed in rectanguiar boxes, diamonds, circles, and various
other geometric figures. Each of these figures represents a step or set
of steps in the solution of the problem. The boxes are connected by
directed lines that specify the sequence or “flow” of the steps in the
procedure. Flow-charting methods and conventions are described more
fully in Computer Oriented Mathematics* and Algorithms, Computation
and Mathematics.?

Since “reading” flow charts is not within the powers of present-day
computers, the user must express his program in a form that can be
utilized by the computer. Just as we communicate with other human
beings through a language such as English, German, or French, we may
communicate with a computer in a computer language. The language
in which a program is expressed may be the built-in language of the
computer (machine language) or a “problem-oriented” language that
can be translated into machine language by the use of the computer
itself. ALGOL (ALGOrithmic Language) and FORTRAN (FORmula
TRANslator) are examples of probleni-oriented languages, which will
be discussed in Chapter 3.

The statement of a program in computer language is called a coded

1 National Council of Teachers of Mathematics (Washington, D.C.: The Council,
1963).
2 School Mathematics Study Group (Stanford, Calif.: Stanford University, 1965).

(SRR CIPes

I e PO W

-

o TR AT

e e D
L e .

STEPS IN PROBLEM SOLVING / 9

START

DEFINE PROBLEM

Y
ANALYZE PROBLEM

¥
DESIGN A PROGRAM

i

INPUT PROGRAM |_

INTO COMPUTER | MAKE
CORRECTIONS

(DEBUG)

A

RUN PROGRAM
WITH TEST DATA

Rl

ANALYZE RESULTS

CORRECT? NO
~ 7

YES

DOCUMENT THE PROCEDURE

]

READY FOR
PRODUCTION
RUNS

Fic. 2-1.—Flow Chart of Computer-Assisted Problem Solving

program, or routine. The next step is to test the coded program in the
computer, using input data for which correct results have been deter-
mined in advance.

Input of the Program into the Computer

In order to run (or execute) the coded program on a computer, the
user must first enter it into the computer. The code may be entered

10 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

manually by means of a keyboard (e.g., typewriter) attached directly to
the computer. This method is commonly used on srall computers. A code
to be entered into a larger computer is usually transcribed onto a com-
puter input medium, such as punched cards or magnetic tape, and read
in automatically.

If the program is written in a language such as ALGOL or FORTRAN,
it must be translated into the language suitable for the computer that
is being used. This is accomplished by the use of a special computer
program, called a compiler, that is provided as part of the complete com-

puter system.

Execution of the Program with Test Data

After the coded program has been entered into the computer, it is
executed (run automatically), using input data for which the correct
results are known. The input data may be entered by means of a key-
board or on punched cards, magnetic tape, or other input media, as
determined by the program.

The results of the test run are made available on a computer output
medium, such as a listing printed on a typewriter or printer, or on punched
cards.

Interpretation of the Trial Run

The results produced by the computer during the trizl run are ex-
amined to determine if the run was successful. That is, the results pro-
duced by the computer are compared with the results known to be cor-
rect for the data used in the trial run. If the computer results are correct
(within acceptable tolerances) it may be assumed that the procedure is
correct along the “paths” tested by the data.

Most computer procedures have one or more branch points at which
an alternate route is selected through the procedure; hence, there may
be two or more distinct subsequences of operations possible in solving
the problem for different sets of input data. Care must be taken in
selecting input data that all the possible paths through the program will
be tested.

Debugging (Correcting Errors in a Program)

In using a computer, the new user is often shocked when programs
do not work out correctly the first time. (Experienced users are shocked

when the program does run correctly the first time!) A typing or punch-
ing error can cause the entire program to fail. Also, an error in the

g ¥

g
e s e e

e e B bumbigari

-

e AR T L A e

ATRE s IS

T AT 2

o7 TR

Nt

RROR

e e et £
S e R S

L e

W

P h.—.ﬂww k«w Ay

STEPS IN PROBLEM SOoLVING / 11

original analysis of the problem or the design of the program may result

in the computer’s producing answers that bear no relation to the original

problem.

As the user becomes more experienced, the process of debugging
(finding and correcting errors) becomes an easier task. The process tends
to be highly individualistic, with some users being able to develop great
skill in locating errors. The following general principles may be helpful.

1. Proofread the program carefully.
9. Perform hand calculations that follow the computer program.

3. Rerun the program with additional instructions that direct the com-
puter to print the results of intermediate calculations.

Documentation of the Problem-Solving Procedure

Much of the problem-solving use of computers is “one-shot” {the pro-
cedure is used once and thrown away) or of interest only tc a single
person. Fraquently, however, a problem-solving procedure is developed
that is sufficiently useful that it will be used again. Occasionally a
procedure is developed that could be of use to a great many people. In
this event, the procedure should be documented so that it can be easily
used again by both the originator and others who might find the pro-
cedure useful. A report should be written that describes the problem, the
analysis of the problem, the problem-solving procedure, and the method
of using the procedure on the computer, and includes the results of test
runs that illustrate features or limitations of the procedure. This report
should be clear, concise, and complete. When this has been done, the
procedure is ready for production use by the originator and others who
have the same type of problem to solve.

S . e B
- R 22 N S SRR

FREQUENTLY we tend to think of a computer system primarily in
terms of the physical devices that comprise it: the transistors, mag-
netic cores, diodes, indicator lights, control levers, input units, and other
items of hardware. We consider the size and speed of the memory, the
number of operations per second, the facilities for input and output, and
the richness of the repertory of instructions that the system can execute.

The hardware, however, is only one of several elements in a general-
purpose computer system. An equally important element is the set of
computer programs designed to make the computer do what we want
it to do. These programs are collectively called software.

There are two basic types of software. One type is designed to make
the computer system easier to use. It determines what programming lan-
guages and what methods of operation can be used on the system. This
category includes utility routines, interpreters, assemblers, compilers, and
monitors. These will be described later in this chapter.

The second category of software consists of programs designed to use
the computer as a problem-solving tool in mathematics, science, and
other areas of application. For example, in mathematics we might write
programs to use a computer to evaluate functions, find roots of equations,
generate sequences, invert matrices, and compute statistics. Some of
these programs are used only once or twice and then discarded; others
are of general utility and are used repeatedly. Some routines are used
as building blocks, called subroutines, in larger programs. Routines that
are used frequently are placed into the software library of the computer
system. The library is the set of all programs that are always available

12

LRGSO b SIS 2 E STV ore R i

R e L =

.
s

s

TIETIEL S

AR

P N S

R

SRS ooy

¢ R <R

B vy 1
e

COMPUTER SYSTEMS / 13

to users of the system. The libraries of two computer systems may be
different, even though both systems use the same kind of hardware.

A third element in a computer system is the set of instructional ma-
terials for using the system. This includes written procedures for using
the hardware and software and the textbooks, workbooks, reference
manuals, and other educational material for training people in use of the
computer. This element is particularly important when a computer is
used in the secondary school.

To repeat—a general purpose computer system consists of three ele-
ments:

1. Hardware
2. Software
3. Instructional materials
In ChaptF 2 we Ksted and described eight steps in solving a problem |
on a ccmputer. These steps are shown below in abbreviated form.
Define the problem.
Analyze the problem.
Develop a program.
Input the program into the computer.
Execute the program with test data.
Interpret the results.
If necessary, debug the program.
Document the procedure.

1.
2.
3.
4.
5.
6.
7.
8.

Consideration of the particular computer system to be used may be
necessary as early as Step 2. For example, the analysis may indicate that
the problem is too large or too complicated to be run on the computer
system that is available. In this event, the user must reduce the size of
the problem or try to obtain access to a larger computer system.

In Steps 3, 4, and 5, the system is clearly involved. The program must
be written in a language acceptable to the system, then entered into the
system and executed. Hence, the user must be aware of the programming
language or languages available on the system and must conform to the
conventions and procedures for using the system.

The proper interpretation of the results of the test run (Step 6) may
depend in part on the user’s knowledge of the computer system. This is
particularly true if there are errors and debugging is required. Errors
may be due to a faulty analysis, an incorrect program, or possibly a pe-
culiarity of the computer system itself (for example, round-off error due

14 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

to approximate arithmetic with numerals of fixed length). Occasionally
errors occur because the user does not fully understand the characteristics
of the programming language (e.g., FORTRAN) that he is using. If
there are errors, the nser may use the system again to assist him in de-
bugging his program.

The rest of this chapter consists of a more detailed description of com-
puter systems and methods of communication with computer sys“ems.
We assume that the reader is already acquainted with the general con-
cept of a stored-program computer and with the writing of a program
in some computer language. The intent of this chapter is to describe
several types of computer systems and several methods of using com-
puter systems as instructional tools in educational programs.

Minimum Computer System

The most basic computer configuration consists of a computer with
manual input and output. The input device may be a set of push but-
tons on the control panel of the computer or a numeric keyboard similar
to the keyboard on an adding machine. Output is obtained by stopping
the computer and displaying results by lights or dials on the control
panel. In order to obtain a permanent reccrd of the results, the user
must record the results by hand. Figure 3-1 is a diagram of this con-
figuration.

MANUAL MANUAL
INPUT COMPUTER OUTPUT

Y

4

Fic. 3-1.—Minimum Computer Configuration

A system of this type is usually programmed directly in machine lan-
guage. In developing a program, the user must prepare a list of instruc-
tions coded directly in the built-in language of the computer. Hence
the program usually appears as a list of numerals, each numeral repre-
senting one instruction.

The coded program is entered into the computer by means of the
manual input device. The user sits at the control panel and enters the
instructions, one at a time, into the storage unit of the computer. This
procedure is tedious and is prone to error. When the program has been
entered, the user usually verifies that it has been entered correctly by
reading it back, one instructicn at a time, using the manual output (dis-
play).

After the program has been entered aud verified, it is ready for

TR T T PR N T N AR W T

COMPUTER SYSTEMS / 15

execution. If data are required, they may be manually entered into the
storage unit prior to execution or (as called for by the program) during
execution. This, of course, depends on the manner in which the program
directs the computer to request the input of data.

During execution, results may be displayed as they occur, or they may
be stored in the storage unit for later inspection. In the first case, as each
result is generated, the computer stops with the result displayed on the
panel display; the operator records the result and then directs the com-
puter to continue. In the second case, the computer stops only at the end
of the program, with all the results stored in the storage unit. The op-
erator then reads the results out, one at a time, and records them.

If an incorrect result occurs during a test execution of the program,
the program must be debugged. One method of debugging is by hand-
executing the program. This is done by following the program, step by
step, exactly as the computer would do it. The user carries out each
instruction in exactly the same way that the computer would and records
the information generated at that step. This method is very time-con-
suming and is not practical for large programs. Ano*her method is called
console debugging. It consists of executing the prog m a step at a time,
or a few steps at a time, on the computer itself. After each step or set of
steps is executed, the user compares the information in the computer
with proviously calculated correct information. In this way the error
can be localized, found, and corrected. This procedure ties up the com-
puter for long periods of time and is usually used only as a last resort.

The minimum computer configuration may be useful for solving smali
problems or for training in computer fundamentals. Its utility is limited
by the necessity to input programs by hand and by the fact that it can be
programmed only in machine language. Machine language is difficult
to learn and tedious to use. On many computers it is not practical to use
machine language for programming student problems. Operatingavith
such a system, the student would face a difficult and time-consuming
task in organizing his program, setting up the arithmetic operations, and
planning for input of data and output of answers.

Systems with Automatic Input and Output

The usefulness of the basic computer configuration can be greatly
enhanced by the addition of automatic input and output equipment.
Automatic input equipment in common use includes the following:

1. Paper-tape readers
2. Card readers

oo S T O TG U NS

® SSat R

RS TI T IIE

16 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

Automatic output devices include the following:

1. Typewnriters

2. Line printers

3. Paper-tape punches
4, Card punches

Typewriters, paper-tape readers, and paper-tape punches are the least
expensive of the above devices and are widely used with small, “low
cost” computers. These devices, however, are also the slowest and least
convenient automatic input and output devices. A typical small computer
configuration is shown in Figure 3-2. '

PAPER-TAPE | COMPUTER | PAPER-TAPE
READER " PUNCH
} R
TYPEWRITER

Fic. 3-2.—Typical Small Computer Configuration

The paper-tape reader usually provides automatic input at rates from
10 characters per second to 350 characters per second, depending on the
computer and the type of reader. The reader may be mechanical or
photoelectric.

Paper-tape punches usually range in speed from 10 characters per
second to 60 characters per second. The typewriter provides for manual
input (via its keyboard) and for outpnt at the rate of 10 to 15 characters
per second.

Another commonly used configuration, usually more expensive than
the one described above, is shown in Figure 3-3. :

CARD .| COMPUTER - CARD

READER - ‘ " PUNCH

[

TYPEWRITER

Fic. 3-3.—Typical Card 1/O System

Punched-card readers operate at 100-1,500 cards per minute and card
punches at 100-250 cards per minute. Each card can contain up to 80

COMPUTER SYSTEMS / 17

columns of information. A configuration such as the one in Figure 3-3
will usually also have a line printer. Line printers will print information
at rates from 100-1,200 lines per minute, with line widths of up to 132
columns. A line printer mzy operate off-line or on-line. If the printer is
off-line, information is first punched out on ca:ds. The cards are dien
placed on the printer and the information is printed. If on-line, the
printer is attached to the computer and readable copy is produced di-
rectly on the printer. This configuration is shown in Figure 3—4.

LINE
| PRINTER
CARD COMPUTER

READER
)) CARL

PUNCH
TYPEWRITER

Fic, 3-4.—Card System with On-Line Printer

Addition of automatic input and output units tremendously increases
the power of the computer. Some advantages are listed below.

1. Programs can be transcribed into paper tape or cards by inexpensive
preparation devices, then read automatically into the computer.

2. If a program has been debugged by console debugging, the correct
version can be dumped from the storage unit by punching it on paper
tape or cards.

3. A library of routines can be stored permanently on paper tape or
cards.

4. The use of more powerful programming languages becomes possible.
5. Data can be prepared off-line and entered quickly and automatically.
6. Results are available in permanent form.

On a system with automatic input and output, machine-language pro-
gramming is uswally done by means of a symbolic assembly system. An
individual using a symbolic assembly system proceeds in the foliowing
way. First he writes his program in a symbolic representation of ma-
chine language: that is, he specifies an addition or subtraction operation
with a mnemonic combination of letters such as ADD or SUB instead of
with some nonsuggestive numeral. This symbolic version of the program
must be translated (converted into machine language) before it can be
performed. This translation is called assembly and is carried out by a
program called an assembler or assembly program. (The assembler exists,

18 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

of course, in machine language, for it has to be executed directly by the
hardware equipment.)

The programmer is also assisted by previously prepared utility pro-
grams and routines. These may include routines for performing input
and output, and for simulating floating-point arithmetic.! With these
aids it is much less difficult to program student problems. However, sym-
bolic language programming is still difficult, tedious, and prone to error.
With practically all computers in current use, it is desirable to employ
programming languages that are easier to learn and use.

On many computers, particularly the small ones, one frequently pro-
grams in a language that resembles machine language but is actually
much easier to learn and use. A program written in such a language is
ordinarily executed one instruction at a time by a special machine-
language program called an interpreter. For instance, when an ADD in-
struction is encountered, the interpreter interprets it as a floating-point
addition to be simulated within the interpreter, rather than as a machine-
language addition. Such a language is called an interpreter language
because programs written in it are executed with an interpreter.

While interpretive languages are relatively easy to use, and are not
nearly so difficult to teach as are machine languages, nonetheless they are
oriented more toward the computer than toward the user. That is, inter-
pretive languages usually imitate machine languages in their general ap-
pearance. (Interpreters are discussed in the next section.)

Another class of languages are the algorithmic languages such as
ALGOL and FORTRAN. The common characteristic of these user-
oriented languages is that computational statements are written in a no-
tation similar to ordinary algebra (hence also the term algebraic lan-
guage).

Before the computer can execute a program written in an algorithmic
language, the program must be translated into machine language. Since
the typical algorithmic language is not at all like machine language,
the translater programs must be much more powerful than the assembly
programs and interpreter programs mentioned earlier. They are usually

called compilers. The compiling or translating portion of a problem run.

can be a significant part of the total computer time used.
The use of interpreters and compilers on computer systems with auto-
matic input and output is described in the next two sections.

! This is a form of arithmetic in which numbers are represented by numerals written
in a special form of scientific notation. Scaling and keeping track of decimal points
are done automatically. Floating-point arithmetic is usually a hardware feature of
large computers, but it may not be a feature of a small computer.

e

-

RS A NI e e T W K

A R el S LT

..

e

i S,

s, iy e WP TR

Rk b £

COMPUTER SYSTEMS / 19

Interpreters

Interpreters (also called interpretive systems) permit programming in
a language that is easier to learn and use than machine language. The
interpretive language is usually similar to a machine language, but it
provides features and operations that are not inherent in the computer
used for execution of the program. These usually include the following
features and operations:

1. Conversion of input data from decimal to binary numerals and
conversion of output results from binary to decimal numerals

2. Floating-point arithmetic

3. Standard functions such as square root, sine, cosine, exponential,
logarithm, and inverse tangent

4, Operations for indexing and iteration
5. Debugging aids
6. Simplified operation of the computer

Interpreters that use a machine-language-like code are still widely used
on older computers or on computers that are too slow to permit efficient
use of algorithmic languages. They are most commonly used with small
computers that have magnetic drum, magnetic disk, or delay-line mem-
ories and use typewriters and paper tape for input and output.

The interpreter routine is a machine-language program that must be
entered into the memory of the computer and remain there during the
oxecution of a program written in interpretive language. It is usually a

lengthy program of several hundred or even several thousand instructions. -

Hence, it may occupy a major portion of the memory. The interpreter
routine is usually stored permanently in the form of a roll of paper tape
or a deck of punched cards.

In order to input and execute an interpretive-language program, a
student follows a procedure similar to the following;:

1. Load the interpretive system into the computer via the automatic
input device.

2. Load the interpretive-language program into the computer. It may
be entered by means of the typewriter, or it may be punched into paper
tape or punched cards and entered by means of the automatic input
device.

3. Execute the interpretive-language program.

If several interpretive-lunguage programs are to be executed, one after

P S RSOY

T

20 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

the other, it is usually necessary to input the interpreter only at the be-
ginning. Then the interpretive-language programs can be entered and
executed, one at a time, without having to load the interpreter each time.
However, for many small computers in current use, the interpretive sys-
tem is very “touchy”; that is, an error made by a student can easily wipe
out a portion of the interpreter in the computer’s memory. In this event,
the interpreter must be reloaded. The time required to Icad the inter-
preter is very important; this time may range from as little as a minute to
an hour or more! Recently, some interpreters have been introduced that
permit use of the algorithmic languages described in the next section.
These interpretive systems are much easier to use than systems in which
programs must be coded in a language that resembles machine language.

Algorithmic Languages

Most computer programs for the solution of mathematical problems
are written in an algorithmic language: that is, in a language especially
designed for expressing algorithms. The most commcenly used algorithmic
languages are ALGOL (ALGOrithmic Language) and FORTRAN
(FORmula TRANslator). There are many subsets and dialects (varia-
tions) of ALGOL and FORTRAN in current use.

When using an algorithmic language, a student writes a program in a
form that is very close to the mathematical description of the problem.
For example, some expressions are shown below as they might be written
in mathematical notation, in ALGOL, and in FORTRAN.

Mathematical
Expression ALGGCL FORTRAN
bz — 4ac B12—-4XAXC B**2 — —4,0%"A*C
e” EXP (X) EXPF (X)
sin (a + b) SIN (A + B) SINF (A 4+ B)
X — 3| ABS (X —3) ABSF (X — 3.0)

ed — bf (EXD —~BXF)/(AXD—BXC) (E*D — B*F)/(A*D — B*C)
ad — bc
On present computers, it is not possible to run ALGOL or FORTRAN
programs directly; they must first be translated into machine 'anguage.
This translation is usually done by the computer itself under control of a
machine language program called a compiler. After the algorithmic lan-
guage program has been translated, it can be executed. The steps in
writing, compiling, and executing an algorithmic-language program are
outlined on the following page.

Zre TIT

e

B T

e

[

- e
e et =

COMPUTER SYSTEMS / 21

1. The student writes a program in the algorithmic language; this pro-
gram is called the source program.

2. The compiler is loaded into the computer.

3. The source program is entered under control of the compiler and
translated to an equivalent object program of machine-language instruc-
tions. The source program can be entered manually via the typewriter,
or it may be punched iuio paper tape or cards and entered via the auto-
matic input unit. As the object program is generated, it usually is punched
out on the automatic output unit.

4. A tape or card deck of library routines is read in and the routines
required by the object program (e.g., floating-point, arithmetic, sine,
cosine, etc.) are punched into the ohject-program tape or card deck.

5. The object program is loaded into the computer (this usually wipes
out the compiler) and executed.

The student must write a source program (Step 1), compile the source
program to obtain an object program (Steps 2, 3, 4), and load and exe-
cute the object program (Step 5). The time required to write a source
program is usually much less for algorithmic-language programming than

for machine-language or interpreter-language programming. Unfortu-
nately, on many small computers the compile time is so long that only a
few programs can be compiled in a day. On some small computers with
drum or disk memories, the compile time may be more than one hour
even for short programs. On the other hand, many small computers with
magnetic-core memories and fast paper-tape or card input and output
units can compile short programs in a few minutes. Large-scale com-
puters can compile short programs in a few seconds!

In order to increase the efficiency of processing algorithmic-language
programs, a method called batching, or batch processing, is frequently
used. With batch processing, the compiler is read into the computer
only once. Then several source programs are compiled and object pro-
grams obtained for each one; they are not executed at this time. The
object programs are separated so that data may be placed with each
program. Then the object programs with data may be read into the
machine and executed, one after another, without interruption. When
the first program finishes, the second program and data are read into the
computer automatically. When the second program finishes, the third
program and data are read into the machine, and so on until all programs
have been processed. ,

This method of operating in batches has the advantage of increasing

e Y

LA

i Y

29 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

the program-handling capacity of the system. However, there are also
some disadvantages:

1. The object programs must be separated by hand.

9. If there are many programs, there may be a long wait between com-
pilation and execution of a program.

3. The processing must be monitored (supervised) by a skilled operator
who cap restart the processing in case something goes wrong (for ex-
ample, a program may hang up and stop the automatic processing).

If the computer has sufficient memory capacity, a compile-and-go
system may be used. With this type of system, the compiler and the
library are retained in a portion of the memory. The source program is
read, and the object program is generated, stored in a different part of
the memory, and immediately executed. The object program is not
punched out. With a compile-and-go system, we might proceed as fol-
lows:

1. Load the ccmpiler and the library into the computer.

9. Place the source program and the data in the input unit. Compile
and execute the program.

Step 2 is repeated for each student’s program. This type of system is
well suited to situations in which many small programs are to be proc-
essed. With most small computers, the compiling phase can require min-
utes, tens of minutes, even an hour or more. Consequently, it may not be
practical to use algorithmic languages on many currently available small
computers. On very large computers the compiling phase may require
only a second or less, and one finds algorithmic languages to be by far
the most common programming languages for large computers.

Compilers for algorithmic languages automatically provide all the
necessary functions such as input-output, and even floating-point simu-
lation if it should be needed (a few quite large computers do not have
floating-point hardware).

In addition, the compiler may provide for a library of special programs.
For instance, there might be a readily available routine, prepared in ad-
vance, for solving linear equations. One dimension in evaluating a total
computer system is the extensiveness of such programs in the library.
Routines needed, but not provided in the library, must be prepared by
the programmer himself.

In some recently developed systems, algorithmic-language programs
are executed by an interpretive system instead of being first translated

syt T W AT e I e

et

COMPBUTER SYSTEMS / 23

into an equivalent machine-language program. This approach is used
in “time-sharing” systems (described later in this chapter) and in some
very recently introduced small computers.

Systems with Auxiliary Storage

The power and flexibility of a computer system can be increased by
adding additional storage capacity. This may be done by expanding
the primary storage capacity of the computer or by adding auxiliary
storage units. The auxiliary units usually provide much greater capacity
but slower access to information than the storage unit on the computer
itself. The cost-per-unit of stored information is usually much less for an
auxiliary unit than for the primary computer storage. A computer with a
few thousand characters of primary storage may have several million
characters of auxiliary storage.

Increased storage capacity permits the use of more sophisticated soft-
ware and makes it possible to solve larger problems on the system. Some
of the uses of auxiliary units are listed below.

1. The library may be stored in the auxiliary unit. Hence, any program
in the library can be read into the computer quickly and conveniently.

2. A program that is too large to fit into the storage unit of the com-
puter itself can be read in from the auxiliary unit, a section at a time,
and executed.

3. A problem may require repeated processing of a set of data that
is too large to fit int¢ the computer’s storage unit. The data can be
processed by placing them in the auxiliary unit.

A computer hardware system with auxiliary storage is shown in
Figure 3-5.

We will briefly describe the following four types of auxiliary storage

AUXILIARY
STORAGE
y
AUTOMATIC X | AuToMATIC
INPUT +| COMPUTER —1 " OUTPUT

Fi1c. 3-5.—Computer Hardware System with Auxiliary Storage

=

I I TR

i L E e e e

SR

24 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

units. For a detailed description of these and other auxiliary storage
units, see Borko 2 or Chapin.?

1. Magnetic-tape units

2. Large-capacity magnetic drums

3. Disk files

4. Large-capacity magnetic-core units

The magnetic-tape unit is the most commonly used auxiliary storage
device, especially on small and medium-size computers. On large com-
puters, magnetic-tape units may serve all three functions: input, output,
and auxiliary storage.

More than 10,000,000 characters of information can be stored on a reel
of magnetic tape. In many cases, a single reel of tape can hold the entire
software library of a computer system. Most systems that use magnetic
tape have several tape units. Hence, several reels of tape (one reel per
unit) can be on the system at any time in order to provide a large amount
of auxiliary storage.

The primary disadvantage of magnetic tape is the slow access time.

Since information is stored serially on a reel of tape, it may take

several seconds or even several minutes for the tape unit to position its
reel for the desired information.

Much faster access time is provided by magnetic drums and magnetic
disk files. A drum may provide capacities ranging from a few tens of
thousands to a few million characters of storage. Access to information
stored on a Arum is very fast, compared to magnetic-tape access. Typical
access times are in the range of 10-50 milliseconds (1 millisecond =
0.001 second). However, large-capacity drums are very expensive and
are usually found only on large, expensive systems.

A disk file provides very large storage capacities at less cost than a
drum. A typical disk file may store 2,000,000 to 50,000,000 characters of
information. Access to information in a disk file is usually slower than
access to information stored on a drum. Typical access times are in the
range of 50-500 milliseconds.

Recently, large-capacity magnetic-core units have appeared. These
units provide very rapid access; information can be obtained from a core
unit in a few microseconds (1 microsecond = 10"% seconds). Mass core
storage is very expensive and is usually used only on large systems.

* Harold Borko, Computer Applications in the Behavioral Sciences (Englewood
Cliffs, N.J.: Prentice-Hall, 1962).

® Ned Chapin, Introduction to Automatic Computers: A Systems Approach (Prince-
ton, N.J.: D. Van Nostrand Co., 1963).

e e

© pemL), BRI oy

spoRen e, e

v sy FUUISRC AT

B

TANTARE RN Sy ey s e

COMPUTER SYSTEMS / 25

AUTOMATIC SMALL AUTOMATIC

INPUT COMPUTER " OUTPUT

O
7

1
COS é MAGNETIC TAPE UNITS
Q"

i

LARGE
COMPUTER

Fic. 3-6.—Large-Scale Computer System

On a large-scale computer system, magnetic tape is used for both aux-
iliary storage and input-output. In fact, the only input-output devices
attached to the large computer may be magnetic-tape units. In this event,
a small computer is used to transcribe information from paper tape or
cards to magnetic tape. The magnetic tape is then used as input to the
large computer. Similarly, the large computer sends information out to
magnetic tape; the tape is then placed on the small computer system and
the information punched or printed.

In this system the small computer acts as a buffer between the slow
input-output equipment and the large computer. Many small computers
in current use can operate several input-output devices and several tape
units simultaneously. Once the information is recorded on magnetic tape,
it can be read into the large computer at rates up to 240,000 characters
per second.

Auxiliary storage permits the :se of sophisticated operating systems,
even on smaller computers. For example, on a system with auxiliary
storage the steps in compiling and executing an algorithmic language
are greatly simplified. These steps are described below, with the assump-
tion that the source program has been written and punched into cards
for automatic input. We assume also that the compiler is stored in the
auxiliary storage unit, as are all library routines that might be required
by a source program. The steps in compiling and executing the program
are outlined below:

1. Place the source program and data on the card reader.
2. Call in the compiler from the auxiliary storage unit and start it.

The compiler now assumes control; the source program is read and

L S i

AT T

26 ,/ COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

translated. As the object program is generated, it is sent to the auxiliary
storage unit. If library routines are required, they are automatically
read from the auxiliary storage unit and copied into the object program.
When the compilation is complete, the object program is automatically
read back into the computer and executed.

An even more powerful operating system, called a monitor, is described
in the next section.

Monitors

In the operating procedures described previously we have assumed
that the processing of every program is initiated and supervised by a
human operator. For example, suppose that five students wish to use
the computer, for the following reasons:

1. Student No. 1 wishes to compile and execute an algorithmic lan-
guage program.

9. Student No. 2 wishes to retrieve and execute a program that is in
the library. He has a deck of cards containing his data.

3. Student No. 3 wishes to compile and execute an algorithmic-language
program.

4. Student No. 4 wishes to assemble and run a program written in a
symbolic form of machine language.

5. Student No. 5 wishes to use an interpretive system to run a program
written in interpretive language.

Each problem is initiated by a manual operation to call in the appro-
priate system from the auxiliary storage unit. The set-up time may be
appreciable. In fact, on a fast computer, the set-up time may be longer
than that required for the actual processing of a program.

The operation of the computer must be closely monitored (supervised)
by a human operator so that when a run is completed the next one can
be initiated with minimum delay. The operator may also intervene if a
run appears to hang up—that is, if it seems to require too much time and
no results are printed.

Most of the responsibilities of a human operator can be taken over by
the computer itself under control of a software system called a monitor,
or executive system. A monitor is a machine-language program that re-
sides in the computer storage unit at all times and exercises supervisory
control over all computer system activities.

When a monitor is used, each job (program, problem, etc.) to be run
is preceded by a control card that tells the monitor what is to be done.

RO Sy L

o A ST R R S S LRV

Jp—

e e D e iy s (AR

A RV Mgy v

g oy o

R Stetd

COMPUTER SYSTEMS / 27

The monitor calls in the appropriate software from the auxiliary storage
unit, runs the job, and then reads the next control card. As new jobs
come in, they are added to the back of the stack; the monitor proceeds
automatically from job to job until all of the jobs have been completed.
Manual set-up time is eliminated.

The monitor also provides many other conveniences. For example, if
the running time for a job exceeds a predetermined limit (indicated in
the control card), the monitor bumps the job and reads in the next con-
trol card. By means of control cards, the monitor can be directed to add
a program to the library; to delete, modify, or list a program; or to print
a catalog of the programs that are currently in the library.

Practically all large-scale computers operate under control of a monitor.

Time-Sharing Systems

A powerful new type of computer system has been developed—one
that permits many users to share the simultaneous use of a large, fast
system in a convenient and practical manner. This type of system is called
a time-sharing system.

Each user communicates with the computer system by means of a
terminal such as a Teletype®, an electric typewriter, or a keyboard for
input and a small TV screen for output. Terminals are connected di-
rectly to the system by coaxial cable or indirectly by means of ordinary
telephone lines.

If the connection is by means of telephone lines, a terminal can be
geographically remote from the computer system. It can be in a different
city or even in a different state.

LARGE
DRUM OR DISK
STORAGE UNIT

l

INPUT OUTPU
DEVICES COMPUTER DEVICES
COMMUNICATIONS
CONTRGLLER
, c i
TELEPHONE —— TELEPHONE
LINES LINES
TERMINAL TERMINAL
T N

Fic. 3-7.—~Time-Sharing System

B S == TP AN ISR PNy

e e e LT TR

e S TR

1
E
§
3
:
:
5
-
]
\F

28 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

Several time-sharing systeras are already in everyday use. Typical

. systems service from 20 to 200 terminals per system. Many of these sys-
* tems include features designed specifically for educational use, and ter-

minals are in use at secondary schools, colleges, and universities through-
out the United States. Some of these systems operate nearly 24 hours a
day, every day.

A time-sharing system requires a very fast computer with a large drum
or disk anxiliary storage unit. In addition, it must have hardware devices
that permit many terininals to be attached to the system. Figure 3-7
diagrams a time-sharing system.

The time-sharing system operates under control of a very powerful
set of software. All of the functions normally performed by the monitor
in a monitor-controlled system, plus many of the administrative functions
normally performed by computation-center personnel, are controlled by
the time-sharing software. These administrative functions include sched-
uling the use of the computer (determining which user gets to run his
problem and when), recording automatically the computer time used
(for charging purposes), and managing the library of programs.

An understanding of the use of the system can perhaps best be gainea
by examining the procedure for solving a problem on the system, using
one of the terminals. We will assume that the user (a teacher or student)
has written a program in an algorithmic language and now wishes to
process his program on the system. We also assume that he is using a
terminal that is connected to the system through an ordinary dial tele-
phone. ~

First, he gets the attention of the system by dialing. He is then able
to communicate with the system by means of the terminal.

He enters the program by typing it on the keyboard of the terminal.
As the program is typed, it is stored on the drum or disk storage unit.

Now suppose that the user, having completed his typing, requests the
computer to run his program (which exists now on the disk unit). If the
computer is not being used at the moment by any other user, other than
for routine input and output, our user’s program will be running in a
matter of a fraction of a second. If his problem requires only a second
or so to complete (the case with many student exercises), it will be run
to completion and then the output printed on the terminal. This output
may consist of the desired results or may be one or more error messages
pointing out typing or other errors in his program.

If the computer is being used when the run request is made. *he request
is held in a list with a certain priority. The time-sharing software con-
tains a scheduling portion that determines, among all those prog.ams

TR e et oy e)

ORI T

W T s .

COMPUTER SYSTEMS / 29

requesting computer time, which program is to be run next and how
much time is to be allocated. Eventually (in a few seconds) our user is
scheduled to be next. The software system causes the computer to cease
running the program then being worked on (even if it is not finished),
causes it to be written off onto the disk unit, brings in our user’s program
from the disk, and starts running it.

If our user’s program requires longer than a second or so, his problem
may in turn be interrupted, written off on the disk, and held in abeyance
for a short time while other users are serviced. Later (again, in a matter
of seconds) his program will be brought back from the disk and con-
tinued from the exact place where it was interrupted. This process is
replicated until the program is completed and all the results have been
printed.

The time-sharing system is especially well suited to situations in which
many short programs are to be processed. This, of course, is the type of
situation encountered when a computer is used as an instructional tool
in teaching secondary mathematics.

It should be noted also that the type of computer used in a time-sharing
system is usually 100 to 1,000 times as fast as small drum- or disk-memory
computers that might be acquired by a school for classroom use. Hence,
a program that might run for several minutes on a small drum-memory
computer would be executed in a few seconds on the time-sharing system.

Student Access to a Computer System

In some programs of computer education, students are permitted direct
access to the computer for hands-on execution of programs. Each student
enters his own program info the computer and operates the computer
during the execution of the program. This type of operation is usually
possible only with “low cost” computers. In many cases, these are machines
that have been technologically replaced by more modern equipment.

Most of the small, obsolete computers in current use for student access
do not have efficient systems for processing algorithmic language pro-
grams. Hence they are usually programmed in machine language or in
an interpretive language that resembles machine language. Wherever
this is the case, it will be difficult to use new textbooks developed for
using computers in secondary mathematics (e.g., the SMSG text, Algo-
rithms, Computation and Mathematics). Furthermore, the time spent in
the mere mechanics of using the computer may exceed the time spent in
the underlying mathematical analysis and development of problem-
solving concepts. Students may tend to become gadget-oriented rather
than problem-oriented and mathematics-oriented.

30 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

Hands-on use of a computer has at least one advantage over some other
types of access. If a program has an error, it may be possible for the
student to correct the error and run the program while he is still at the
computer initially, or within a few minutes in the event that he has to
relinquish control of the computer to another student. In fact, each
student may be on and off the computer several times during the period
in which the computer is available. There may also be an additional
motivational benefit (for some students) with hands-on use.

There are several disadvantages to hands-on use. Operation of the
computer by a student, compared with operation by a trained, skilled
operator (for example, a vocational trainee), is relatively slow and iaeffi-
cient. This tends to reduce the number of student programs that can be
processed in a given length of time. This is especially true if programs
must be typed in by a student who cannot type except by the hunt-and-
peck method! Similarly, if programs are first prepared on paper tape or
cards, the available preparation units may quickly be overloaded by
slow, error-prone, unskilled students. The direct-access approach can
drastically reduce the number of students able to participate in the
computer-oriented educational program.

The advantages and disadvantages of actually having a computer in
the school must be related to the costs of existing small computers. With
older, obsolete computers, the cost-per-student in the program is quite
high. However, new equipment is being introduced that is much more
useful and considerably less expensive than the small drum-memory
computers available during the last few years. Also, some of the new
computers are small enough that they can be brought directly into the
classroom when needed.

It must be remembered that when a computer is used as an instruc-
tional tool in teaching mathematics, it is not really important to teach a
stude.t to be a skilled computer operator. Instead, the important goals
are for him to learn the effective use of a computer as a problem-solving
tool and to gain an appreciation of the relationship between mathematics,
computers, and problem solving. These objectives can be achieved by
providing an efficient means for processing programs written by students.
This can be done by indirect access, in which student programs are sent
to a computer center by mail, by courier, or by transmission over a tele-
phone system. In this type of access, an important consideration is the
turn-around time; this is the elapsed time between sending the program
and receiving the results.

A courier service provides an efficien* and low-cost method of trans-
mitting student programs. Programs are sent by messenger to a com-

A I s AR ke mTEEAR I st e e A

. s gy LR B R T

g e SR

g W AT s gy g ARSI T g oy o,

et

- kAR,

COMPUTER SYSTEMS / 31

puter center for execution, and the results are returned in the same way.
Programs may be sent in handwritten or typed form to the center to be
transcribed to punched cards or magnetic tape. (As an alternative, equip-
ment for preparation of programs into computer-readable form can be
installed in the school. An exciting possibility for the near future is the
use of optical scanners and optical character readers for this purpose.)
Turn-around time may range from a few hours to a few days, depending
on the proximity of the computer center to the school, the means of
transporting information, and the efficiency of the computer center. Some
school districts already have compuiters for administrative data processing
that could also serve the needs of students. Another possibility is leasing
computer time from commercial service bureaus. Still another is that the
user of a computer in the vicinity of the school may agree to provide the
service. An outstanding choice is a university .center; in fact, several
universities now provide free computer services to schools in their geo-
graphical areas. In some parts of the country, educational data centers
are being established to provide a variety of computer services to partici-
pating schools. In some cases, these services include processing of student
programs. _ :

If a school district is geographically remote from a computer center,
indirect access can be achieved by sending and receiving programs by
mail. The main disadvantage of this method of operation is the longer
turn-around time.

The availability of low-cost communication equipment permits direct
telephonic transmission of student programs to a computer center for fast
turn-around processing. The school installs a paper-tape or punched-card
device that is directly attached to a telephone line for the communication
of information to the computer center. When the device is not being
used for actual transmission, it may be used by students for the prepara-
tion and verification of tapes or cards for later transmission. The program
is reproduced on tapes, cards, or magnetic tapes at the computer center;
it is processed, and the results are transmitted back to the student.
Student programs might be sent in the evening, with the results available
at the beginning of the next school day.

At the present time, some form of indirect access to computers is the
least expensive and most efficient way to use computers as instructional
tools in teaching mathematics. No capital investment is required by the
school, and advantage can be taken of algorithmic-language processing
on modern computers. It is especially recommended for schools that are
just getting started in this field.

Although time-sharing is relatively new, several secondary schools are

32 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

already using this approach. A school district can install a terminal by
paying a flat monthly charge plus additional charges that depend on
how much the terminal is used. In this way, the cost can be geared
directly to the number of students participating in the educational pro-
gram and the manner in which the program is conducted.

Terminals may be installed in individual schools or in a central loca-
tion (e.g., the administration building). Students may have direct access
or indirect access to the terminals, or a combination of both. For exam-
Dle, if a terminal is installed in a school, students may be given limited
access during the school day; then, at night, student programs can be
run so that results will be available the next morning. In many cases,
the terminal itself can double as a paper-tape preparation device. Pro-
grams can be prepared off-line (that is, with no connection to the com-
puter) and transmitted at a later time. This results in reduced operating
costs.

Projects are under way to evaluate the several ways of providing
student access to computers at a reasonable per-student cost. It may
happen that some blend of two or more approaches will be the best way.

i

T IR R e BT g WS LN

o T

e

ple Problems

N ORDER to obtain some quantitative information on the efficiency
of the types of computer facilities described in the previous chapters,
we set up five sample problems and ran them on several currently avail-
able computer systems. These samples are typical of the elementary
problems that students in secondary schoois program and execute on a
computer. The results will give some indication of the number of student
programs that can be processed, per day, on the types of computer systems
we have selected and used.
First, we will describe the sample problems. Then we will describe
the computer systems on which the problems were solved and analyze
the capabilities of the systems.

Sample Problems

Sample problem 1

We wish to develop a procedure to direct a computer to compute the
roots (real or complex) of the equation

ax® + bx + ¢ =0,
or—switching now to ouie kind of computer typography—
AX2 + BX 4+ C =0,

where A, B, and C are rational numbers expressed in a form suitable for
direct input into a computer. The following equations are already in
suitable form for the computers that we will consider:

1.3X2 +4X 4 5=0.
33

AT GRS e

ey ey

- s

e A L T

A

poarEd

L R

P

34 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

i

3 10 13
C EQUATION
2 -
D<B 4AC R — B NOT
VALID

TRIVIAL

CASE

e

5
P <€ —B/2A A
Q<€ V-D/2A —B - VD
R2 € B- VD

6

COMPLEX

ROOTS
A,B,C,P,Q

Fic. 4-1.—Flow Chart for Sample Problem 1
2. 0.7X24 23X —36=0.
3.98X24+73=0.
However, the following are not in proper form:
4 X2 +4X —2=0.
5 X2 4+ 42X ~-3=0.
We can rewrite (4) in either of the following ways:

6. 0.66667 X2 4 0.57143X — 0.83333 = 0.
7. 28X2 + 24X — 35 =0.

In (6), we have replaced each rational number by a five-decimal-digit

e

i S LA

Y

L

P s

R g

AR R SR s gt

T g TR e

R s

SAMPLE PROBLEMS / 35

rational approximation (hence, we raise the question of whether the roots
will be good approximations to the roots of the original equation).

In (7), we have multiplied both sides of Equation 5 by 42 and obtained
an equivalent equation in a form suitable for computer input.

In Equation 5, we must replace 4/2 by a suitable approximation, say
1.4149, getting the following (nonequivalent) equation:

8 X2 4 14142X —3 = 0.

Shown in Figure 4-1 is a flow chart of our problem-solving procedure.
Note that we have made provision for input of data such as the following.

A B C Remarks

1 2 Two real roots

1 1 Two complex roots
0 1 2 One real root
0 0

0 1

Trivial case
Not a valid equation

Our flow chart conventions conform to those in the SMSG text, Algo-
rithms, Computation and Mathematics.

Sample problem 2

The secord benchmark problem is a procedure to compute the mear.,
variance, and standard deviation of the array

X19 X29 seey Xn-

This type of problem is usually characterized as having a lot of input
data and very little output data. We have used the following formulas:

N N
+X2 - (s X.,2
VARIANCE =V = 1\1;{(f R

N(N—1)

STANDARD DEVIATION =S =+/V.

We have used the following variables for intermediate results:
N

S]. = E X5.
ji=1

i
i
TR

S e AR T

e A i

36 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

START
1
\li{x<1),1=1<1m}/ 7
4
2

S1 €

S2 <&
3 5

A € S1/N
] <l) F N{(52)—(s1)° ¢
J <N ~ V€N A,S,V
> J€J+1 S €V
4 T
4
S1 € S1+4X;
S2 €S2 4 X;?
Fi1c. 4-2.—Flow Chart for Sample Problem 2
N
SZ = 2 Xj2.
]=
In terms of the variables S1 and S2, our equations for A and V are—

A = S1/N.
V= N(S2) — (S1)2

N(N-1)

Our procedure is shown in Figure 4-2. This procedure directs the
computer to do the following:

1. Read the value of N and then the N values X;, X,, . . ., X,. (Flow
Chart Box 1.)

2. Compute the values of S1 and S2. (Flow Chart Boxes 2, 3, 4.)

3. Compute the values of A, V, and S. (Flow Chart Box 5.)

4. Print the values of A, V, and S. (Flow Chart Box 6.) |

5. Return to the beginning. (Return Line, labeled “7.”)

This procedure was run for N=30. The data are shown on the fol-
lowing page.

LA i afith,

R A Y e, "
Wwwutay‘;.am:am,k‘_. i e A it

R A

O g oY ~E

N it

R - T

b s e R

[U S

v Ev g

SAMPLE PROBLEMS / 37

30 } Value of N

53, 62, 29, 70, 85, 93

31, 49, 79, 66, 60, 45 1

83, 75, 59, 79, 76, 89 30 Values of X;
66, 39, 76, 89, 92, 59

75, 46, 86, 83, 79, 67

Sample problem 3

Now let’s look at a problem with a lot of input, a lot of output, and a
great deal of shuffling of data within the computer. This procedure

"N, {X(J),J=1(1)N}

}

| x<1 F
T \/
} F
J <1
> JEN
J<=]J+1
1T
T)
‘—GZXJ
F
i
T € X;
X € X,
X; €T

F16. 4-3.—Flow Chart of Procedure for Sample Problem 3

SR R Ny

A

ey

38 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

directs the computer to permit input of an array, sort the array into
descending numerical order, and output the sorted array.

EXAMPLE
Input Data Output Data
53 91
65 81
29 76
37 73
81 65
76 65
65 53
73 46
91 37
46 29

A flow chart of our procedure is shown in Figure 4-3 on the preceding

page.

This procedure was run for the set of data shown in the second sample
problem, page 35.

Sample problem 4

This procedure directs the computer to tabulate the function
F(X) =/Xfor X =1,2,3,..., N. That is, the computer will generate
and output a table of X and+/X. There will be N lines in the table. For
example, if N = 10, the table might appear as follows:

© W0 =1 Uk G D

10

SQUARE ROOT OF X
1.00000
1.4)421
1.73205
2.00000
2.23607
2.44949
2.64575
2.82843
3.00000
3.16228

This problem is characterized by having very little input (only the
value of N) and quite a lot of output. A flow chart of the procedure is
shown in Figure 4-4.

If 30 is the value of N, the output table will consist of 30 lines, with
two numerals on each line.

e wans :

X g i gy IR

g

e

- g

e s

SAMPLE PROBLEMS / 39

Fic. 4-4.—Flow Chart for Sample Problem 4

Sample problem 5

The final sample problem is a procedure to determine if a number, M,
is a prime number. If M is a large integer, ther this procedure might
be characterized as having very little input (only M), very little output
(a short message), and a lot of computation in between. A flow chart of
the procedure is shown in Figure 4-5. It is one of many possible proce-
dures and is not necessarily the “best” procedure. In the flow chart--

INT(M/N) = integer part of M = N.
Q = integer quotient of M = N.
R = remainder on dividing M by N.

This procedure directs the computer first to test M to determine if it
is an integer > 2. If so, it causes M to be divided by the triai diviscrs,
2,3,4,...,v/M. (If M = 2, this will not happen.) After each division,
the remainder is computed and tested. If the remainder is zero, the
process terminates and the message “M IS NOT A PRIME NUMBER.
N IS A DIVISOR” is printed. If the remainder is nonzero for N =2,
3, ..., VM, the computer prints the message“M IS A PRIME NUMBER.”

The procedure was run for the following values of M: —5; 6.3; 1; 2;
13; 259; 1,517; 8,797; 30,031; 510,510.

40 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

START
I
1
M
8
: M IS NOT A
IS M AN
INTEGER > 2? M
YES |
3 s
S <v/M
4 : 9
N <2 F M IS A PRIME
N<S ~ NUMBER \
= \/\
T
5
Q <« INT (M/N)
R<€M - N:-Q
r 7
¢ R=0 ML M IS NOT A
PRIME NUMBER.
= N IS A DIVISOR.

"

Fic. 4-5.—Flow Chart for Sample Problem 5

Computer Facilities

The sample problems were programmed and executed on several com-
puter systems, ranging from small desk-sized computers to modern large-
scale systems. Whenever possible, the programs were written in an
algorithmic language.

These systems are described in the next six sections, along with the
results obtained in running the sample problems. The results are then
summarized. The computers used are identified by letters, A through F.

AN Y TR R R e R SR e e R
T VST

R T T

R - 6 SR

e

e R T e

i TR AT PR g 2 e

SRsl

gkt 48 ey .
i, W R WX TV s e - bwees o

-

A ggeta ¥

LS . = .
S cammpmiews o

s RS IEIXT AT e

e

o AT S o

SAMPLE PROBLEMS / 41

Computer A

The sample problems were programmed and executed on a small com-
puter that is in use in secondary school educational programs. This
computer has a magnetic-drum memory, paper-tape input/output, and
typewriter input/output. ,

In an educational environment, this computer is usually programmed
by means of an interpretive system, using a language that resembles a
machine language. Programs written in this language cannot be run on
any other computer.

The five sample problems were programmed in interpretive language
and executed on the machine according to the following procedure:

1. The interpretive system was entered by means of the paper-tape
reader.

2. The interpretive language program was entered manually by means
of the typewriter.

3. The machine was directed to execute the program. If data were

required, they were entered by means of the typewriter. (The data to
be used are shown in the vample problem description.)

The programs were run again, using the procedure shown below:

1. The interpretive system was entered by means of the paper-tape
reader, as in Step 1 of the previous procedure.

2. The program and data were punched into paper tape off-line.

3. The program tape was entered by means of the tape reader.

4. The machine was directed to execute the program. Data were read
in by means of the paper-tape reader.

The interpretive system was entered once at the beginning of the test
runs. Then the five programs were entered and executed, one after the

other. Times (in seconds) are given in Table 1, as information is avail-
able. '

In using the table, the following points should be kept in mind.
" 1. The programs were completely coded prior to approaching the
computer.

2. The programs were entered by a skilled operator without any errors
being made. For manual input by students, the input time could vary
tremendously from the figures shown.

An advertised feature of Computer A is the existence of a FORTRAN
system. In order to judge the practicality of algorithmic-language

R T T SR e

i entein, KT

N Ro—

42 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

TABLE 1
TiMES FOR COMPUTER A, WITH INTERPRETIVE LLANGUAGE
Task Manual Input Paper-Tape Input

Load Interpreter 2101 2101
Enter Program 1 420
Execute Program 1 35
Enter Program 2 180
Execute Program 2 95
Enter Program 3 180 (Times not
Execute Program 3 250 available)
Enter Program 4 90
Execute Program 4 90
Enter Program 5 360
Execute Program 5 60

Totals §Secs.) 1,970

Totals (Mins.) 32.8

1 In both cases, the interpretive system was read in on paper tape.

processing on a small machine, the sample problems were programmed
in FORTRAN, compiled, and executed. Two procedures were used.
The first is described below.

1. Prepare a FORTRAN source-language tape on-line. (Note that the
computer is tied up.)

2. Compile the source-language program. An object-language program
is punched out on paper tape.

3. Enter the object program into the computer.

4. Execute the object-language program.

Results are shown in Table 2. As can be seen, total computer time
used to run the five programs was 5,200 seconds = 86.7 minutes.

If a paper-tape preparation unit is available, the source program can
be prepared off-line. In this event, the total computer time used would
be 3,460 seconds = 57.7 minutes.

TABLE 2
TrMEs FOR CoMPUTER A, witH FORTRAN
Prepare Compile and Enter
Problem Source Tape Object Program Execute

Sample Problem 1 600 1,020 35
Sample Problem 2 250 418 95
Sample Problem 3 250 418 250
Sample Problem 4 130 204 90
Sample Problem 5 510 870 60

Totals (Secs.) 1,740 2,930 530

s A A g,

N

= T

s

bt
5 R oy

ST e

1 S AR Sy)T

R e g

e Y s T A e .

SAMPLE PROBLEMS / 43

Computer B

Computer B is a magnetic-core-memory, solid-state machine that was
announced in late 1966. A minimum configuration consists of the com-
puter with Teletype® input/output, a paper-tape reader, and a paper-tape
punch. The computer is very small and can be moved from place to place.

The problems were programmed in an algorithmic language very
similar to the new languages being developed for use on large time-
sharing systems. Programs written in this language are executed by
means of an interpretive system. However, the language itself is much
more powerful than the machinelike interpretive language used in Com-
puter A. An additional feature of Computer B is that it can be controlled
from a remote location by a Teletype® cornected to it over a telephone
line. Hence, two or more schools in a district can have convenient access
to this machine on a cne-at-a-time schedule.

The five sample problems were programmed in interpretive language
and executed on Computer B according to the two procedures used for
Computer A, and the five programs were entered and executed, one after
the other. Results, with the times given in seconds, are given in Table 3.

The times for manual input of programs include correcting several
errors. Furthermore, only two programs were written beforehand. The
others were composed directly from the flow charts while on-line to the
computer. This was possible because of the similarity of the language
that was used to mathematical notation and because of the ease in finding
and correcting mistakes when using this type of system.

A FORTRAN system is also available for this computer, but it was
not tested.

TABLE 3
TiMeEs FOR CoMpPuTER B, WITH INTERPRETIVE LANGUAGE

Task Manual Input Paper-Tape Input

Load Interpreter 600
Enter Program 1 540
Execute Program 65
Enter Program 2 340
Execute Program 110
Enter Program 3 153

Enter Program 4 60
Execute Program 140
Enter Program 5 180
Execute Program 5 184

Totals $Secs.) 2,734
Totals (Mins.) 45.6

1
2

Execute Program 3 360
4

44 / COMPUTER FACILITIES FOR M/THEMATICS INSTRUCTION

Computer C

The sample problems were also run on a small core-memory computer
with punched-card input/output. This computer is in very common use
for administrative data processing in a number of school districts. The
programs for this computer were written in FORTRAN. The source pro-
grams were punched into cards (off-line) and then compiled and exe-
cuted. Data were also entered by means of punched cards. Compile-
and-execute times are given in Table 4, in seconds. These times do not
include the time to punch the source programs and data into cards for
entry into the computer. The total time to run the five problems was
2,761 seconds = 46.0 minutes.

TABLE 4
Tries ForR CompuTER C, witH FORTRAN
Problem Compile Execute
Sample Problem 1 546 45
Sarnple Problem 2 542 40
Sample Problem 3 510 65
Sample Problem 4 420 63
Sample Problem 5 , 480 50
Totals (Secs.) 2,498 263
Totals (Mins.) 41.6 44

Computer D

This system has core memory, punched-card I/O, an on-line printer
in addition to a typewriter, and magnetic-disk auxiliary memory. The
algorithmic language is compile-and-go, with the compiler as well as the
generated object program residing on the disk. Thus the only cards
which need be entered for a run are system request cards (2), compiler
control card (1), the source program, and the data. Jobs are stacked
one after the other in this fashion.

Compile-and-execute times are shown in Table 5. Compile time shown
is that between the entrance of the system request cards and the com-
puter’s indication that compilacion is complete. Execution time is that
required to read the program off the disk and execute it before the next
system request card is re:id. The entire operation is handled by the
supervisor program (ie., automatically). The total time for the five
problems was 405 seconds = 6.8 minutes.

Computer D is actually. an expanded and upgraded version of Com-
puter C. Addition of auxiliary-disk storage is the primary reason for the
decrease in compile time. The decrease in execute time is caused by

2R &

R TR A

R PR

T e

. P TL P

AT

AL

e e T

s

s ST

et - LT

e ne

o RS R e

B SR

i ach

e AR

o AT T QR IR s g e e T % i

o T g TR e

e g R R

<+ e U AT g

e

ikl

SAMPLE PROBLEMS / 45

improvements in the central computer and improved software to execute

the compiled program.

TABLE 5
TimEs For CoMPUTER D
Problem Compile Execute
Sample Problem 1 80 25
Sample Problem 2 45 20
Sample Problem 3 45 55
Sample Problem 4 30 25
Sample Problem 5 55 5
Totals £Secs.) 255 150
Totals (Mins.) 4.3 2.5
Computer E

Computer E is a large-scale computer located at a university. The
sample problems were coded in two different algorithmic languages,
FORTRAN and MAD. The programs were sent {0 the computer center
in the afternoon after school, and results were available when school
began the next morning (overnight turn-around).

For both FORTRAN and MAD a compile-and-go system, operating
under monitor contro}, was used. The times shown in Table 6 are
combined compile-and-execute times. These are given in minutes (since
that is the form in which they are printed on the ouiput sheets—the
computer system itself times each run).

TABLE 6

CompuTeER E, CoMBINED COMPILE-AND-EXECUTE TIMES
Problem FORTKAN MAD
Sample Problem 1 0.40 0.28
Sample Problem 2 0.39 0.25
Sample Problem 3 0.39 0.26
Sample Problem 4 0.40 0.24
Sample Problem 5 0.39 0.26
Totals (Mins.) 1.97 1.29

Computer F

Computer F is actually a Teletype® connected by phone line to a
time-sharing system. The problems were run twice on the time-sharing

system.

First they were run by hands-on use of the system: that is, a telephone

AT AR Ay v e 1 b

xR

s,

ATE G AT ¢

e

e T Em S

46 / COMPUTER FACILITIES FOR MATHEMATICS INSTRUCTION

connection was established with a time-sharing computer system, and
the programs and data were transmitted manually, by typing them on
the Teletype® terminal. Next the programs and data were punched into
paper tape, off-line from the system (that is, without a telephone con-
nection to the computer). Then the connection was established, and the
programs and data were transmitted by means of the paper-tape reader
on the Teletype® terminal. Times are given in Table 7. In each case,
the time is the total time that the Teletype® terminal was in use during
the entry and execution of the program. Times are given in seconds and
in minutes.

TABLE 7
ComputeR F, ToraL Times TERMINAL Is IN Use
Problem Manual Input Paper-Tape Input

Sample Problem 1 300 125
Sample Problem 2 240 58
Sample Problem 3 240 99
Sample Problem 4 240 101
Sample Problem 5 250 108

Totals 2Secs.) 1,270 491

Totals (Mins.) 21.2 8.2

For the time-sharing system, it must be emphasized that the times
shown are not the computer times. Since the school’s access to the com-
puter is the Teletype® (or other terminal), the significant time is the
Teletype® time. Remember, the computer is servicing many such Tele-
types® simultaneously.

Summary

Table 8 shows a summary of the total time to input and execute the
five sample programs for each combination of computer facility and
method of operation discussed in this chapter.

We will not attempt to make a cost analysis for the facilities described,
since there arc too many variables. Some of the points to consider in
making such an analysis are listed below.

1. How many students are to be involved?

2. The sample problems are simple problems which students work on
as they are beginning to learn to use computers. As their skill increases,
they will write programs that require much more time. (On Computers
A, B, and C, it will be impossible or impractical to handle many of these
problems.)

"..

T

R P T E S

AT LRI A 0 it o v
e $ 42 R G Ly

e e T e

i g

R N

St ¥

e s .

pTRIY /A g - ———

e TR e~

SAMPLE PROBLEMS / 47

AT SRR ALTTIN

TABLE 8
TorAaL TiMEs FOR INPUT AND EXECUTION
Computer Method of Operation Time (Mins.)

A MLT! Interpreter-—Manual Input 32.8
A MLT! Interpreter —Paper-Tape Input N.A.
A FORTRAN—On-1.ine Source Preparation 86.7
A FORTRAN—Off-Line Source Preparation 57.7
B Algorithmic Language Interpretive System— 45.6

Manual Input
B Algorithmic Language Interpretive System— 25.2 :

Paper Tape Input ;
C FORTRAN—Card Input 46.0 :
D FORTRAN-—Monitor Control 6.8
E FORTRAN—Compile-and-Go 2.0
E MAD—Compile-and-Go 1.3
F Algorithmic, Manual Input 21.2
F Algorithmic, Paper-Tape Input 8.2 8

1 Machine-Language Type

e RnL

3. How many programs can be run in a given period of time (class
period, day, week)?

4. What is the cost-per-problem?

5. What is the cost-per-student over a school year?

6. What is the turn-around time for each run? That is, how long a
time elapses after a student submits his problem before he gets the
results back? (Note: The actual computer time used is not by itself an
important consideration—the cost-per-problem is important, and the turn-
around time is important.)

7. How sophisticated is the software available? What languages are
provided? How easy will it be for the student to use the system?

8. What is the teaching and training time before a student can write
a program and use the computer? Mainly, this means: How easy is it
to teach the main language and the operating procedures?
9. Can two or more approaches—for example, a time-sharing terminal
for small problems plus overnight turn-around to n computer for large
problems—be used together to provide more efficient, lower cost opera- :
tion than a single system? ;

S ST Sy

S S R A

< oI

The most important thing to do in choosing a computer facility is to
try out each one yourself!

B S

